
1
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Automated Code Generation for
High-Performance, Future-Compatible 
Graph Libraries

SEI PI: Dr. Scott McMillan, Senior Research Scientist

CMU PI’s: Prof. Franz Franchetti, ECE

Prof. James C. Hoe, ECE

Prof. Tze Meng Low, ECE



2
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon 

University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government 

position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN 

"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY 

MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR 

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND 

WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see Copyright notice for 

non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal 

permission. Permission is required for any other use.  Requests for permission should be directed to the Software Engineering Institute at 

permission@sei.cmu.edu.

DM18-1167

Legal



3
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Data-Intensive Computing Efforts at the SEI

2013 20152014 2016 2018

2014-current: GraphBLAS Forum (MIT/LL, LBNL, UCSB, UC Davis, Intel Research, IBM Research)

2016 Line: GraphBLAS
2017-18 Line: Spiral Graph: Automated 

Code-Generation for Graph Algorithms (CMU)2013-15 Line: Graph Algorithms on Future Architectures (Indiana U)

2015: Development and Release of 

GraphBLAS Template Library, v 1.0 

(with Indiana U)

2014:  C3E Challenge: 

Graph analytics for 

detecting APTs in 

network data (SCORE)

2014: NSA Predictive 

Analytics Hands-on 

Workshop

2016: NSA/LTS Pattern of Life 

Graph Analytics

2015-current: Development of GraphBLAS C API Specification (w/ LBNL, Intel, IBM, UC Davis)

2016: OSD Decision Analytics

2017

2016-17 Line: Big Learning Benchmarks (CMU)

2017-18: GraphBLAS Template Library, v 2.0 

(with CMU/PNNL)

R
e
s
e
a
rc

h
 &

 D
e
v
e
lo

p
m

e
n
t

P
ro

o
f 
o
f 
C

o
n
c
e
p
t

P
ro

g
ra

m

2018-21 Line: A Series of 

Unlikely Events: Learning 

behaviors in big data (CMU)

2018 LENS: COTS Benchmark 

Baseline for Graph Analytics (CMU)

2019: GraphBLAS book 

and hands-on tutorial

2019–

2019-21 Line: Spiral for

AI and ML (CMU)

2018-22: DARPA ERI: Software-

Defined Hardware

2019 LENS: Graph Signal 

Processing (CMU)



4
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Problem: 

• Heterogeneous high-performance computing (HHPC) architectures are becoming more complex (the NSCI 

push to exascale).

• Graph algorithms are difficult to program efficiently even on today’s hardware architectures.  

• Exascale trend: Programming these systems will be much more difficult.1

Solution: 

• Create an automated code generation tool that produces high-performance graph algorithm 

implementations for specified hardware.  

• Make graph algorithms performance-portable and future-compatible.

Approach: 

• Create formal abstractions of graph algorithms and primitives (build on GraphBLAS).

• Extend formal abstractions of chosen hardware architectures (build on Spiral and DARPA HACMS, DESA, 

PERFECT, BRASS).

• Create tool for mapping graph algorithms to hardware architectures for efficient code generation of data-

intensive applications.

SpiralGraph: Automated Code Generation for Future-
Compatible, High-Performance Graph Libraries

1FACT SHEET: National Strategic Computing Initiative, 29 July 2015.



5
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Graph Analysis Is Important and Pervasive

Slide credit: Jeremy Kepner, et al. “Mathematical Foundations of the GraphBLAS”, IEEE HPEC, Sept. 2016.

Common Goal: Detection of subtle patterns in massive graphs

Cyber

• Graphs represent 

communication patterns of 

computers on a network

• 1,000,000s – 1,000,000,000s 

network events

• GOAL: Identify cyber attacks or 

malicious software

Social

• Graphs represent relationships 

between individuals or 

documents

• 10,000s – 10,000,000s 

individual and interactions

• GOAL: Identify hidden social 

networks

• Graphs represent entities and 

relationships detected through 

multi-INT sources

• 1,000s – 1,000,000s tracks and 

locations

• GOAL: Identify anomalous 

patterns of life

ISR



6
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Today’s Computing Landscape

1 Gflop/s = one billion floating-point operations  (additions or multiplications) per second Slide credit: Franz Franchetti, “18-847G, 2018, Lecture 1: How Big is Big?”

IBM POWER9
768 Gflop/s, 300 W

24 cores, 4 GHz

4-way VSX-3

Intel Xeon 8180M  
2.25 Tflop/s, 205 W

28 cores, 2.5—3.8 GHz

2-way—16-way AVX-512

Intel Xeon Phi 7290F
1.7 Tflop/s, 260 W

72 cores, 1.5 GHz

8-way/16-way LRBni

Snapdragon 835
15 Gflop/s, 2 W

8 cores, 2.3 GHz

A540 GPU, 682 DSP, NEON

Nvidia Tesla V100
7.8 Tflop/s, 300 W

5120 cores, 1.2 GHz

32-way SIMT

Intel Atom C3858
32 Gflop/s, 25 W

16 cores, 2.0 GHz

2-way/4-way SSSE3

Dell PowerEdge R940
3.2 Tflop/s, 6 TB, 850 W

4x 24 cores, 2.1 GHz

4-way/8-way AVX

Summit
187.7 Pflop/s, 13 MW

9,216 x 22 cores POWER9

+ 27,648 V100 GPUs



7
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Separation of Concerns

Separate the complexity of graph analysis from the complexity of hardware systems:

S
e
p

a
ra

ti
o

n
 o

f 
C

o
n

c
e
rn

s



8
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Separation of Concerns

GOAL: write once, run everywhere…fast (with help from hardware experts).

G
ra

p
h

B
L

A
S

 A
p

p
li

c
a

ti
o

n
 

P
ro

g
ra

m
m

in
g

 I
n

te
rf

a
c

e
 (

A
P

I)



9
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Primitives

http://graphblas.org “A. Buluc, T. Mattson, S. McMillan, J. Moreira, C. Yang, “The GraphBLAS C API Specification, v 1.0.0,” May 2017, updated May 2018.

Operation Description

mxm, mxv, vxm Perform matrix multiplication (e.g., breadth-first traversal)

eWiseAdd, 

eWiseMult

Element-wise addition and multiplication of matrices (e.g., graph union, 

intersection)

extract Extract a sub-matrix from a larger matrix (e.g., sub-graph selection)

assign Assign to a sub-matrix of a larger matrix (e.g., sub-graph assignment)

apply Apply unary function to each element of matrix (e.g., edge weight 

modification)

reduce Reduce along columns or rows of matrices (vertex degree)

transpose Swaps the rows and columns of a sparse matrix (e.g., reverse directed 

edges)

build Build a matrix representation from row, column, value tuples

extractTuples Extract the row, column, value tuples from a matrix representation

http://graphblas.org/


10
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later
GraphBLAS Forum: https://graphblas.org

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

IBM -GraphBLAS



11
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS

GraphBLAS Forum: https://graphblas.org



12
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU

gpu-GraphBLAS



13
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS
GraphBLAS

Test Framework

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU

gpu-GraphBLAS



14
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS

pyGB
Python Wrapper

around gbtl

GraphBLAS

Test Framework

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU

gpu-GraphBLAS



15
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS

pyGB
Python Wrapper

around gbtl

GraphBLAS

Test Framework

gbtl
Algorithms 
Repository

redis graph
redis labs

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU

gpu-GraphBLAS



16
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Ecosystem: One Year Later

G
ra

p
h

B
L

A
S

 C
 A

P
I,

 v
. 

1
.2

.0

G
ra

p
h

B
L

A
S

 C
+

+
 A

P
I 

(p
ro

p
o

s
a
l)

gbtl

IBM -GraphBLAS

pyGB
Python Wrapper

around gbtl

GraphBLAS

Test Framework

gbtl
Algorithms 
Repository

GraphBLAS Forum: https://graphblas.org

GraphBLAS

on EMU

gpu-GraphBLAS

Optimizing this is 

still difficult, 

time-consuming, 

and costly.
redis graph

redis labs



17
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

What is Spiral?

Traditionally Spiral Approach

High performance library

optimized for given platform

Spiral

High performance library

optimized for given platform

Comparable 
performance



18
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Spiral: Platform-Aware Formal Program Synthesis

˄
p
˃

Architectural parameters:

Vector length, 

#processors, …

rewriting defines

Kernel: 

problem size, 

algorithm choice

abstraction abstraction

Model: common abstraction

= spaces of matching formulas

pick

architecture
space

search

algorithm
space

optimization

GraphBLAS Math:

CàL, zð= (Lṥ.ṧ LT)

count = ṥi,j C(i,j)



19
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

GraphBLAS Primitives: The Math

Operation Mathematical Description Output Inputs

mxm Cà¬M, zð= Cṩ (AT ṥ.ṧ BT) C ¬, M, z,ṩ, A, T, ṥ.ṧ, B, T

mxv, (vxm) cà¬m, zð = cṩ (AT ṥ.ṧ b) c ¬, m, z,ṩ, A, T, ṥ.ṧ, b

eWiseMult Cà¬M, zð= Cṩ (AT ṧ BT) C ¬, M, z,ṩ, A, T,      ṧ, B, T

eWiseAdd Cà¬M, zð = Cṩ (AT ṥ BT) C ¬, M, z,ṩ, A, T,      ṥ, B, T

reduce (row) cà¬m, zð = cṩ [ṥj AT(:,j)] c ¬, m, z,ṩ, A, T,      ṥ

apply Cà¬M, zð= Cṩ f(AT) C ¬, M, z,ṩ, A, T, f

transpose Cà¬M, zð = Cṩ AT C ¬, M, z,ṩ, A (T)

extract Cà¬M, zð = Cṩ AT(i,j) C ¬, M, z,ṩ, A, T,                      i, j

assign Cà¬M, zð(i,j) = C(i,j) ṩ AT C ¬, M, z,ṩ, A, T,                     i, j

build (meth.) C = mxn(i,j,v,ṩ) C ṩ, m, n, i, j, v 

extractTuples (meth.) (i,j,v) = A i,j,v A

Notation: i,j – index arrays, v – scalar array, m – 1D mask, other bold-lower – vector (column), M – 2D mask, other bold-caps – matrix, T – transpose,

¬ - structural complement, z – clear output, ṥmonoid/binary function, ṥ.ṧ semiring,  blue – optional parameters, red – optional modifiers

S
. 

M
c
M

ill
a

n
, 

e
t 
a

l.
, 
“D

e
s
ig

n
 a

n
d

 I
m

p
le

m
e

n
ta

ti
o
n

 o
f 
th

e
 G

ra
p

h
B

L
A

S
 

T
e

m
p

la
te

 L
ib

ra
ry

 (
G

B
T

L
),

” 
S

IA
M

 A
n

n
u

a
l 
M

e
e

ti
n

g
 (

A
N

1
6

),
 J

u
ly

 2
0

1
6

. 
 

U
p
d

a
te

d
 I
E

E
E

 H
P

E
C

 C
o

n
fe

re
n

c
e

, 
S

e
p

 2
0

1
7

.



20
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Spiral: Platform-Aware 
Formal Program Synthesis

int triangle_count (Matrix const &L)

{

Matrix C( L.nrows () , L.ncols ());

mxm(C, L, NoAccumulate(), ArithmeticSemiring <int >(),

L, transpose(L));

int count = 0;

reduce (count, NoAccumulate(), PlusMonoid <int >(), C);

return count;

}

#ɲ=  tr(A3)

=  || L.* (L * LT)|| 1

CàL, zð=  (Lṥ.ṧ LT)

#ɲ= ṥi,j C(i,j)



21
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

SPIRAL’s Math Framework
High Level Operators

z

x

y

Basic Operators

Loop Abstraction Rule Based Compiler 

Leverages DARPA HACMS



22
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

SPIRAL Internals: Autotuning and Code Generation
Autotuning in Constraint Space SPIRAL as JIT and GraphBLAS Optimizer

Formal Approach To Co-Optimization Algorithm/Architecture Co-Optimization



23
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Graph Algorithms in Spiral

Problem 

Specification:

Algorithm 

Choice:

Algorithm 

Derivation:

TriangleCount()

Accum_VMV( TriangleCount() )

BB(

Accum(i4, 1, X.N-1,

Accum_X(i6, [ i4, 0 ], i4,

Dot([ i6, add(i4, V(1)) ], [ i4, add(i4, V(1)) ],

sub(sub(X.N, i4), V(1)))

)))

sr:

X:

X.N:

Accum:

Accum_X:

Dot:

program(

func(TVoid, "transform", [ res, IJ ],

decl([ i6, j131, j1765, j1m31, j231, j2m31, jm32, rf63, rf64 ],

chain(

assign(deref(res), V(0)),

loopf(i4, 1, 262110,

chain(

assign(rf63, V(0)),

assign(j1765, add(V(262112), IJ, nth(IJ, i4))),

assign(jm32, add(V(262112), IJ, nth(IJ, add(i4, V(1))))),

loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), V(0))),

assign(j1765, add(j1765, V(1)))

),

loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), i4)),

…

// dot product

…

),

assign(deref(res), add(deref(res), rf63))

) ) ) ) ) )

Abstract Code:

C Code:

void tc ( int * res , int *IJ) {
for(...) {

// VMV product
}

}

Arithmetic semiring

Input matrix in CSR or CSC format

Number of vertices in the graph

Accumulation/Reduction function

Accumulation over an input range

Dot product



24
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

It Works…



25
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

PageRank Acceleration: Comparison against GPU 
PageRank

16% 84%Pages Opened

63%37%Traffic

Required Redundant 

Memory 

Bound 

SpMV

Two-Step SpMV and Iteration Overlap

Overlapped in time
iteration i iteration i+1

Step 1 Step 2 Step 1 Step 2

xi+1
xi xi+1 xi+2

1st 2nd

Custom Hardware Platform

16nm FinFET ASIC Stratix10 FPGA

Experimental Results
GPU Benchmark

PR_TS_ASIC

PR_TS_Opt_ASIC

PR_TS_Opt_ASIC_Peak

G
T

E
P

S

90x –18x

1

100

10

0.1



26
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Open Source Spiral: CMU/ECE and SEI Partnership

Â Open Source SPIRAL available 

Â non-viral license (BSD)

Â Initial version, effort ongoing to 

open source whole system

Â Commercial support via SpiralGen, Inc.

Â Developed over 20 years 

Â Funding: DARPA (OPAL, DESA, HACMS, 

PERFECT, BRASS), NSF, ONR, DoD HPC, JPL, 

DOE, CMU SEI, Intel, Nvidia, Mercury

Â Open sourced under DARPA PERFECT

Â Ongoing Partnership between SEI and ECE 

www.spiral.net

http://www.spiral.net/


27
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Summary and Future Work

• GraphBLAS C API Specification is complete (and no longer provisional)

- Two conformant implementations in C (SuiteSparse and IBM)

- C++ API proposed with a complete implementation

- Python bindings under development

- Algorithm development using the API continues (30+ completed)

• Development of performant code generation and data structures continues

• Goals for FY19 and beyond:

- Expand to other data-intensive domains: machine learning and AI

- Co-design targeted hardware platforms

• Reconfigurable hardware: FPGAs, DARPA HIVE/SDH hardware

• Incorporate resource constraints: cost, size, weight and power (CSWAP)

• Long-Range Goal: Co-synthesis of hardware and software



28
Automated Code Generation for

High-Performance, Future-Compatible Graph Libraries
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution. 

Research Review 2018

Presenter / SEI PI

Dr. Scott McMillan

Senior Research Scientist

Email:  smcmillan@sei.cmu.edu

Presenter / CMU PI

Prof. Franz Franchetti

ECE Department

Email: franzf@ece.cmu.edu

Contact Information


